Review of Low-Voltage Load Forecasting

Read

This is an overview of load forecasting data sets as presented in our paper available as preprint on arXiv and published in Applied Energy.

Contribute

You know datasets that are missing? See our Github repository of this page on how to contribute!

Use

Name Bibtexkey Type No. Customers Resolution Duration Intervention Sub-metering Weather avail. Location Other data provided: Access/Licence
ADRES (Einfalt et al., 2011) Residential 30 1 s 2 weeks None No No Austria (Upper Austria) Voltage Free for Research (E-Mail)
GREEND Electrical Energy Dataset (GREEND) (Monacchi et al., 2014) Residential 8 1 s 3-6 months None Yes No Austria, Italy Occupancy, Building type Free (Access Form)
UCI Appliances (Candanedo et al., 2017) Residential 1 10 min 4.5 months None No Yes Belgium (Mons) Lights, Building information No Licence
Industrial Machines (de Mello Martins; Vagner Barbosa Nascimento; Antônio Renato de Freitas; Pedro Bittencourt e Silva; Raphael Guimarães Duarte Pinto, 2018) Industrial 1 1 s 1 month None Yes No Brasil (Minas Gerais) CC BY 4.0
Rainforest Automation Energy (Makonin et al., 2018) Residential 2 1 s 2 months None Yes Yes Canada Environmental, Heat Pump, CC BY 4.0
AMPds2 (Makonin, 2016) (Makonin et al., 2016) Residential 1 1 min 2 years None Yes Yes Canada (Alberta) Gas, Water, Building Type and Plan CC BY 4.0
Sustainable Building Energy Systems 2017 (Johnson & Beausoleil-Morrison, 2017) Residential 23 1 min 1 year None Yes No Canada (Ottawa) Sociodemographic (Occupants, Age, Size) Free (Attribution, E-Mail)
Sustainable Building Energy Systems 2013 (Saldanha & Beausoleil-Morrison, 2012) Residential 12 1 min 1 year None Yes No Canada (Ottawa) Sociodemographic (Occupants, Age, Size) Free (Attribution, E-Mail)
FINESCE Horsens Residential 20 1 h several days None Yes Yes Denmark (Horsens) EV, PV, Heat Pump, Heating, Smart Home, CC BY-SA
UCI Individual household electric power cons. (Hebrail & Berard, 2012) Residential 1 1 min 4 years None Yes No France (Sceaux) Reactive Power, Voltage CC BY 4.0
BLOND-50 (Kriechbaumer & Jacobsen, 2017) Commercial 1 50 kHz 213 days None Yes No Germany CC BY 4.0
BLOND-250 (Kriechbaumer & Jacobsen, 2017) Commercial 1 250 kHz 50 days None Yes No Germany CC BY 4.0
Fresh Energy (Beyertt et al., 2020) Residential 200 15 min 1 year Behavioural Yes No Germany Age group, Gender of main customer CC BY 4.0
FINESCE Factory Industrial 1 1 min 2 days None Yes No Germany (Aachen) Machines CC BY-SA
HTW Lichte Weiten (Forschungsgruppe Solarspeichersysteme der HTW Berlin, 2019) Residential 1 15 min 1 year None No No Germany (Berlin) No Licence
HTW Synthetic (Tjaden et al., 2015) Residential 74 1 s 1 year None No No Germany (Representative) Synthetic dataset merged CC BY-NC
CoSSMic (Open Power System Data., 2020) Residential, Commercial 11 1 min, 15 min, 1 h 1-3 years None Yes No Germany (South) PV, EV, Type (Residential/SME) CC BY 4.0
SciBER (Staudt et al., 2018) Other 107 15 min 3 years None No No Germany (South) Type (Office, Gym, ...) CC BY 4.0
iAWE (Batra et al., 2013) Residential 1 1 s 2 months None Yes No India (New Delhi) Water No Licence
COMBED (Batra et al., 2014) Commercial 1 30 s 1 month None Yes No India (New Delhi) No Licence
Irish CER Smart Metering Project data (Commission for Energy Regulation (CER), 2012) Residential, Commercial 3835 30 min 1.5 years Tariff No No Ireland Type (Residential/SME/Other) Free (Signed Access Form)
Hvaler Substation Level data (Dang-Ha et al., 2017) Substation 20 1 h 2 years None No No Norway (Hvaler) No Licence
Energy Informatics Group Pakistan (Pereira et al., 2014) Residential 42 1 min 1 year None Yes No Pakistan Sociodemographic (building properties, no of people, devices) No Licence
UCI Electricity Load Diagrams (Godahewa et al., 2020) Residential, Commercial, Industrial 370 15 min 2 years None No No Portugal No Licence
Electricity Consumption and Occupancy (ECO) (Beckel et al., 2014) (Kleiminger et al., 2015) Residential 6 1 s 8 months None Yes No Switzerland Occupancy CC BY 4.0
Home Electricity Survey (HES) (Zimmermann et al., 2012) Residential 250 2 min 1 month (255) to 1 year (26) None Yes No UK Consumer Archetype Request
METER (Grunewald & Diakonova, 2019) Residential 29 1 min 28 hours None No No UK Activity data, Sociodemographic Free for Research (Access Form)
IDEAL Household Energy Dataset (Goddard et al., 2020) Residential 255 1 s 3 years None Yes No UK Smart Home, Sociodemographic, energy awareness survey, room temperature and humidity, building characteristics CC BY 4.0
Customer-Led Network Revolution project data (Sidebotham & Powergrid, 2015) Residential, Commercial 12000 30 min > 1 year Time of Use No No UK EV, PV, Heatpump, Tariff, CC BY-SA
UK Domestic Appliance-Level Electricity (UK-DALE) (Kelly & Knottenbelt, 2015) Residential 5 16 kHz, 1 s months, one house > 4 years None Yes No UK (London area) CC BY 4.0
UK Low Carbon London (UK Power Networks, 2014) (Godahewa et al., 2020) Residential 5567 30 min 2 years Time of Use No No UK (London) CACI Acorn group CC BY 4.0
REFIT (Murray & Stankovic, 2016) (Murray et al., 2017) Residential 20 8 s 2 years None Yes Yes UK (Loughborough) PV, Gas, Water, Sociodemographic (Occupancy, Dwelling Age, Dwelling Type, No. Bedrooms) CC BY 4.0
Flexible Networks for a Low Carbon Future Substation Several Secondary 30 min 1 year None No No UK (St Andrews, Whitchurch, Ruabon) Free (Access Form)
NTVV Substation Substation 316 5 s > 4 years None No No UK (Thames Valley) Open Access (Any purpose)
NTVV Smart Meter Commercial 316 30 min > 4 years None No No UK (Thames Valley) Open Access (Any purpose)
IEEE PES Open Data Sets Residential, Commercial 15 1 min, 5 min, 15 min 2 weeks None No No USA Connection limit No Licence
Reference Energy Disaggregation Data Set (REDD) (Kolter & Johnson, 2011) Residential 10 1 kHz 3-19 days None Yes No USA (Boston) Voltage Free (Attribution, E-Mail)
Iowa Distribution Test Systems (Bu et al., 2019) Substation 240 nodes 1 h 1 year None Yes No USA (Iowa) Grid data Free (Attribution)
Pecanstreet Dataport (Academic) (Pecan Street Inc., 2018) Residential 75 1 min, 15 min, 1 h 2-3 years None Yes Yes USA (Austin, New York, California) PV, EV, Water, Gas, Sociodemographic Free for Research (Access Form)
Residential Building Stock Assessment (Larson et al., 2014) Residential 101 15 min 27 months None Yes No USA (North West Region) Building Type (Single Family, Manufactured, Multifamily) Free (Access Form)
SMART* Home 2017 (Barker et al., 2012) Residential 7 1 s > 2 years None Yes Yes USA (Western Massachussets) No Licence
SMART* Apartment (Barker et al., 2012) Residential 114 1 min 2 years None No Yes USA (Western Massachussets) No Licence
SMART* Occupancy (Barker et al., 2012) Residential 2 1 min 3 weeks None No No USA (Western Massachussets) Occupancy No Licence
SMART* Microgrid (Barker et al., 2012) Residential 443 1 min 1 day None No No USA (Western Massachussets) No Licence
SMART* Home 2013 (Barker et al., 2012) Residential 3 1 s 3 months None Yes No USA (Western Massachussets) Solar, Wind, Environmental, Smart Home, Voltage, No Licence
Hierarchical Demand Forecasting Benchmark (Nespoli et al., 2020) Residential, Commercial, Substation 24 10 min 1 year None Yes Yes Switzerland (Rolle) Reactive Power, Voltage, THD CC BY 4.0
BLEM (Kostmann & Härdle, 2019) Residential 200 3 min 1 year None No No Germany No Licence
MORED (Ahajjam et al., 2020) Residential, Commercial 12 5 or 10s 30-90 days None Yes No Morocco (Tetuán, Rabat, & Sale) No Licence (Atrribution)
Ausgrid substation data Substation 225 15 min 20 years None No No Australia (NSW) No Licence
Ausgrid Solar Home Residential 300 30 min 3 years None No No Australia (NSW) No Licence
SustData (Pereira et al., 2014) Residential 50 1 min several months None Yes Yes Portugal (Funchal) Voltage, Powerfactor, Reactive Power, Sociodemographic (Type, Bedroooms, occupants) Free for Research (E-Mail)
Smart Energy Research Lab Exploratory Data (SERL) (Smart Energy Research Lab & Local Government, 2020) Residential 1770 30 min 1 year None No No UK Free for Research (E-Mail)
Hourly Usage of Energy (HUE) (Makonin, 2019) Residential 22 1 h 3 years None No Yes Canada (British Columbia) CC-BY 4.0
ENERTALK (Shin et al., 2019) Residential 22 15 Hz 30 days None Yes No Korea No Licence
Living Lab Catapult Residential 100 15 min several months Heating plans Yes Yes UK Heat pumps in some houses, gas usage, room temperature and humidity https://usmart-static.s3-eu-west-1.amazonaws.com/Data+Sharing+Licence+08102019+v3.0.pdf
PIEG-Strom Tool Manufacturer Industrial 1 15 min 1 year None No No Germany CC BY 4.0
PIEG-Strom Electroplating Industrial 1 15 min 1.5 years None No No Germany CC BY 4.0
Western Power Distribution Peak Substation 3 1 min, 30 min 2 years None No Yes UK https://www.westernpower.co.uk/open-data-licence
Western Power Distribution EV Substation 3 15 min 1 year None Yes Yes UK EV Load https://www.westernpower.co.uk/open-data-licence
Western Power Distribution Hierarchy Substation 40 30 min 2 years None Yes No UK Network Hierarchy https://www.westernpower.co.uk/open-data-licence
WPuQ (2.0) (Schlemminger et al., 2022) Residential 38 10 s, 1 h 2 years None Yes Yes Germany (Lower Saxony) Heat pumps, PV, Heating, Power, voltage, current and power factor CC BY 4.0
SustDataED2 (Pereira et al., 2022) Residential 1 0.5 Hz 96 days None Yes No Portugal On-Off Transitions of appliances, current, voltage CC BY 4.0
Northern Powergrid Primaries Substation 171 30 min 1 year None No No UK (North East and Yorkshire and the Humber Region of England) https://northernpowergrid.opendatasoft.com/p/opendatalicence/
CKW Smart-Meter (Individual) Residential, Commercial >100,000 (Aggregated) 15 min 2 years None No No Switzerland https://www.ckw.ch/landingpages/open-data
CKW Smart-Meter (Aggregated) Residential, Commercial >100,000 (Aggregated) 15 min 2 years None No No Switzerland Postcode level https://www.ckw.ch/landingpages/open-data
Borealis Residential 30 6 s up to 1 year None Phases No Canada (Waterloo) Room temperature CC0 1.0 Universal
HIPE Data Set (Bischof et al., 2018) Industrial 10 5 s 3 months None No No Germany (Karlsruhe) Voltage, current, Reactive Power, THD CC-BY 4.0
Smart-Grid Smart-City Customer Trial Residential, Commercial 79000 30 min 4 years Tariff No No Australia appliance use, climate CC BY 3.0 AU
SSEN Distribution LV Feeder Usage Substation 40000 1 h years (updated regularly) No Yes No Scottland, UK Hierarchical from primary substation to LV feeder CC BY 4.0
UK Power Networks Substation 40000 30 min months (updated regularly) No Yes No UK Hierarchical from primary substation to LV feeder CC BY 4.0
OPSCI - Open SCI Substation One 15 min 4 years None true false Ljubljana, Slovenia Voltage
eMARC Residential 144 1 h 3 years None false false India Voltage Non-commercial, attribution
ETDataset (Zhou et al., 2021) Substation 1 1 h 2 years None false false China Oil Temperature CC BY-ND 4.0

Cite

If you find it useful and use it in your work, feel free to cite our preprint:

@article{haben2021review,
    title = {Review of low voltage load forecasting: Methods, applications, and recommendations},
    journal = {Applied Energy},
    volume = {304},
    pages = {117798},
    year = {2021},
    issn = {0306-2619},
    doi = {https://doi.org/10.1016/j.apenergy.2021.117798},
    url = {https://www.sciencedirect.com/science/article/pii/S0306261921011326},
    author = {Stephen Haben and Siddharth Arora and Georgios Giasemidis and Marcus Voss and Danica {Vukadinović Greetham}},
}

References

  1. Einfalt, A., Schuster, A., Leitinger, C., Tiefgraber, D., Litzlbauer, M., Ghaemi, S., Wertz, D., & Frohner, A. (2011). Konzeptentwicklung für ADRES-Autonome Dezentrale Regenerative Energiesysteme. Energie Der Zukunft. 1st Ed. Vienna.
  2. Monacchi, A., Egarter, D., Elmenreich, W., D’Alessandro, S., & Tonello, A. M. (2014). GREEND: An energy consumption dataset of households in Italy and Austria. 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm), 511–516.
  3. Candanedo, L. M., Feldheim, V., & Deramaix, D. (2017). Data driven prediction models of energy use of appliances in a low-energy house. Energy and Buildings, 140, 81–97.
  4. de Mello Martins; Vagner Barbosa Nascimento; Antônio Renato de Freitas; Pedro Bittencourt e Silva; Raphael Guimarães Duarte Pinto, P. B. (2018). Industrial Machines Dataset for Electrical Load Disaggregation. IEEE Dataport. https://doi.org/10.21227/cg5v-dk02
  5. Makonin, S., Wang, Z. J., & Tumpach, C. (2018). RAE: The rainforest automation energy dataset for smart grid meter data analysis. Data, 3(1), 8.
  6. Makonin, S. (2016). Ampds2: the almanac of minutely power dataset (version 2). In Harvard Dataverse (p. V2).
  7. Makonin, S., Ellert, B., Bajić, I. V., & Popowich, F. (2016). Electricity, water, and natural gas consumption of a residential house in Canada from 2012 to 2014. Scientific Data, 3.
  8. Johnson, G., & Beausoleil-Morrison, I. (2017). Electrical-end-use data from 23 houses sampled each minute for simulating micro-generation systems. Applied Thermal Engineering, 114, 1449–1456.
  9. Saldanha, N., & Beausoleil-Morrison, I. (2012). Measured end-use electric load profiles for 12 Canadian houses at high temporal resolution. Energy and Buildings, 49, 519–530.
  10. Hebrail, G., & Berard, A. (2012). Individual household electric power consumption data set. É. d. France, Ed., Ed: UCI Machine Learning Repository.
  11. Kriechbaumer, T., & Jacobsen, H.-A. (2017). BLOND: Building-Level Office eNvironment Dataset [Dataset]. Technical University of Munich. https://doi.org/10.14459/2017mp1375836
  12. Beyertt, A., Verwiebe, P., Seim, S., Milojkovic, F., & Müller-Kirchenbauer, J. (2020). Felduntersuchung zu Behavioral Energy Efficiency Potentialen von privaten Haushalten. https://doi.org/10.5281/zenodo.3855575
  13. Forschungsgruppe Solarspeichersysteme der HTW Berlin. (2019). Lastprofil des Berliner Mehrfamilienhauses Lichte Weiten mit 11 Wohneinheiten (Messzeitraum 2014). \urlhttps://pvspeicher.htw-berlin.de/veroeffentlichungen/daten/.
  14. Tjaden, T., Bergner, J., Weniger, J., Quaschning, V., & Solarspeichersysteme, F. (2015). Repräsentative elektrische Lastprofile für Wohngebäude in Deutschland auf 1-sekündiger Datenbasis. Hochschule Für Technik Und Wirtschaft HTW Berlin.
  15. Open Power System Data. (2020). Data Package Household Data. Version 2020-04-15.
  16. Staudt, P., Ludwig, N., Huber, J., Hagenmeyer, V., & Weinhardt, C. (2018). SCiBER: A new public data set of municipal building consumption. Proceedings of the Ninth International Conference on Future Energy Systems, 618–621.
  17. Batra, N., Gulati, M., Singh, A., & Srivastava, M. B. (2013). It’s Different: Insights into home energy consumption in India. Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings, 1–8.
  18. Batra, N., Parson, O., Berges, M., Singh, A., & Rogers, A. (2014). A comparison of non-intrusive load monitoring methods for commercial and residential buildings. ArXiv:1408.6595.
  19. Commission for Energy Regulation (CER). (2012). CER Smart Metering Project - Electricity Customer Behaviour Trial 2009-2010 [dataset]. 1st Edition.
  20. Dang-Ha, T.-H., Bianchi, F. M., & Olsson, R. (2017). Local short term electricity load forecasting: Automatic approaches. 2017 International Joint Conference on Neural Networks (IJCNN), 4267–4274.
  21. Pereira, L., Quintal, F., Gonçalves, R., & Nunes, N. J. (2014). SustData: A public dataset for ICT4S electric energy research. ICT for Sustainability 2014 (ICT4S-14).
  22. Godahewa, R., Bergmeir, C., Webb, G., Hyndman, R., & Montero-Manso, P. (2020). Electricity Hourly Dataset (Version 3) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.4656140
  23. Beckel, C., Kleiminger, W., Cicchetti, R., Staake, T., & Santini, S. (2014). The ECO Data Set and the Performance of Non-Intrusive Load Monitoring Algorithms. Proceedings of the 1st ACM International Conference on Embedded Systems for Energy-Efficient Buildings (BuildSys 2014). Memphis, TN, USA, 80–89.
  24. Kleiminger, W., Beckel, C., & Santini, S. (2015, September). Household Occupancy Monitoring Using Electricity Meters. Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp 2015).
  25. Zimmermann, J.-P., Evans, M., Griggs, J., King, N., Harding, L., Roberts, P., & Evans, C. (2012). Household Electricity Survey: A study of domestic electrical product usage. In Intertek Testing & Certification Ltd.
  26. Grunewald, P., & Diakonova, M. (2019). METER: UK Household Electricity and Activity Survey, 2016-2019, UK Data Service.
  27. Goddard, N., Kilgour, J., Pullinger, M., Arvind, D. K., Lovell, H., Moore, J., Shipworth, D., Sutton, C., Webb, J., Berliner, N., & others. (2020). IDEAL Household Energy Dataset. University of Edinburgh. School of Informatics.
  28. Sidebotham, L., & Powergrid, N. (2015). Customer-led network revolution project closedown report. Customer Led Network Revolution. Newcastle upon Tyne.
  29. Kelly, J., & Knottenbelt, W. (2015). The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes. Scientific Data, 2(150007). https://doi.org/10.1038/sdata.2015.7
  30. UK Power Networks. (2014). UK Low Carbon London project. https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households
  31. Godahewa, R., Bergmeir, C., Webb, G., Hyndman, R., & Montero-Manso, P. (2020). London Smart Meters Dataset (without Missing Values) (Version 3). Zenodo. https://doi.org/10.5281/zenodo.4656091
  32. Murray, D., & Stankovic, L. (2016). REFIT: Electrical Load Measurements (Cleaned). In University of Strathclyde, PURE.
  33. Murray, D., Stankovic, L., & Stankovic, V. (2017). An electrical load measurements dataset of United Kingdom households from a two-year longitudinal study. Scientific Data, 4(1), 1–12.
  34. Kolter, J. Z., & Johnson, M. J. (2011). REDD: A public data set for energy disaggregation research. Workshop on Data Mining Applications in Sustainability (SIGKDD), San Diego, CA, 25(Citeseer), 59–62.
  35. Bu, F., Yuan, Y., Wang, Z., Dehghanpour, K., & Kimber, A. (2019). A time-series distribution test system based on real utility data. ArXiv Preprint ArXiv:1906.04078.
  36. Pecan Street Inc. (2018). Dataport.
  37. Larson, B., Gilman, L., Davis, R., & Logsdon, M. (2014). J. Uslan and B. Hannas and D. Baylon and P. Storm and V. Mugford and N. Kvaltine. Residential Building Stock Assessment: Metering Study. Technical Report E14-283, Northwest Energy Efficiency Alliance.
  38. Barker, S., Mishra, A., Irwin, D., Cecchet, E., Shenoy, P., Albrecht, J., & others. (2012). Smart*: An open data set and tools for enabling research in sustainable homes. SustKDD, August, 111(112), 108.
  39. Nespoli, L., Medici, V., Lopatichki, K., & Sossan, F. (2020). Hierarchical demand forecasting benchmark for the distribution grid. Electric Power Systems Research, 189, 106755.
  40. Kostmann, M., & Härdle, W. K. (2019). Forecasting in Blockchain-Based Local Energy Markets. Energies, 12(14).
  41. Ahajjam, M. A., Bonilla Licea, D., Essayeh, C., Ghogho, M., & Kobbane, A. (2020). MORED: A Moroccan Buildings’ Electricity Consumption Dataset. Energies, 13(24), 6737. https://doi.org/10.3390/en13246737
  42. Pereira, L., Quintal, F., Gonçalves, R., & Nunes, N. J. (2014). SustData: A public dataset for ICT4S electric energy research. ICT for Sustainability 2014 (ICT4S-14).
  43. Smart Energy Research Lab, C., Ministry of Housing, & Local Government, E. C. for M.-R. W. F., Royal Mail Group Limited. (2020). Smart Energy Research Lab Exploratory Data, 2019-2020: Secure Access. https://doi.org/http://doi.org/10.5255/UKDA-SN-8643-2
  44. Makonin, S. (2019). HUE: The hourly usage of energy dataset for buildings in British Columbia. Data in Brief, 23, 103744.
  45. Shin, C., Lee, E., Han, J., Yim, J., Rhee, W., & Lee, H. (2019). The ENERTALK dataset, 15 Hz electricity consumption data from 22 houses in Korea. Scientific Data, 6(1), 1–13.
  46. Schlemminger, M., Ohrdes, T., Schneider, E., & Knoop, M. (2022). Dataset on electrical single-family house and heat pump load profiles in Germany. Scientific Data, 9, 56. https://doi.org/10.1038/s41597-022-01156-1
  47. Pereira, L., Costa, D., & Ribeiro, M. (2022). A residential labeled dataset for smart meter data analytics. Scientific Data, 9(1), 1–11.
  48. Bischof, S., Trittenbach, H., Vollmer, M., Werle, D., Blank, T., & Böhm, K. (2018). Hipe: An energy-status-data set from industrial production. Proceedings of the Ninth International Conference on Future Energy Systems, 599–603.
  49. Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., & Zhang, W. (2021). Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. The Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Conference, 35(12), 11106–11115.