Review of Low-Voltage Load Forecasting
Read
This is an overview of load forecasting data sets as presented in our paper available as preprint on arXiv and published in Applied Energy.
Contribute
You know datasets that are missing? See our Github repository of this page on how to contribute!
Use
Name | Bibtexkey | Type | No. Customers | Resolution | Duration | Intervention | Sub-metering | Weather avail. | Location | Other data provided: | Access/Licence |
---|---|---|---|---|---|---|---|---|---|---|---|
ADRES | (Einfalt et al., 2011) | Residential | 30 | 1 s | 2 weeks | None | No | No | Austria (Upper Austria) | Voltage | Free for Research (E-Mail) |
GREEND Electrical Energy Dataset (GREEND) | (Monacchi et al., 2014) | Residential | 8 | 1 s | 3-6 months | None | Yes | No | Austria, Italy | Occupancy, Building type | Free (Access Form) |
UCI Appliances | (Candanedo et al., 2017) | Residential | 1 | 10 min | 4.5 months | None | No | Yes | Belgium (Mons) | Lights, Building information | No Licence |
Industrial Machines | (de Mello Martins; Vagner Barbosa Nascimento; Antônio Renato de Freitas; Pedro Bittencourt e Silva; Raphael Guimarães Duarte Pinto, 2018) | Industrial | 1 | 1 s | 1 month | None | Yes | No | Brasil (Minas Gerais) | CC BY 4.0 | |
Rainforest Automation Energy | (Makonin et al., 2018) | Residential | 2 | 1 s | 2 months | None | Yes | Yes | Canada | Environmental, Heat Pump, | CC BY 4.0 |
AMPds2 | (Makonin, 2016) (Makonin et al., 2016) | Residential | 1 | 1 min | 2 years | None | Yes | Yes | Canada (Alberta) | Gas, Water, Building Type and Plan | CC BY 4.0 |
Sustainable Building Energy Systems 2017 | (Johnson & Beausoleil-Morrison, 2017) | Residential | 23 | 1 min | 1 year | None | Yes | No | Canada (Ottawa) | Sociodemographic (Occupants, Age, Size) | Free (Attribution, E-Mail) |
Sustainable Building Energy Systems 2013 | (Saldanha & Beausoleil-Morrison, 2012) | Residential | 12 | 1 min | 1 year | None | Yes | No | Canada (Ottawa) | Sociodemographic (Occupants, Age, Size) | Free (Attribution, E-Mail) |
FINESCE Horsens | Residential | 20 | 1 h | several days | None | Yes | Yes | Denmark (Horsens) | EV, PV, Heat Pump, Heating, Smart Home, | CC BY-SA | |
UCI Individual household electric power cons. | (Hebrail & Berard, 2012) | Residential | 1 | 1 min | 4 years | None | Yes | No | France (Sceaux) | Reactive Power, Voltage | CC BY 4.0 |
BLOND-50 | (Kriechbaumer & Jacobsen, 2017) | Commercial | 1 | 50 kHz | 213 days | None | Yes | No | Germany | CC BY 4.0 | |
BLOND-250 | (Kriechbaumer & Jacobsen, 2017) | Commercial | 1 | 250 kHz | 50 days | None | Yes | No | Germany | CC BY 4.0 | |
Fresh Energy | (Beyertt et al., 2020) | Residential | 200 | 15 min | 1 year | Behavioural | Yes | No | Germany | Age group, Gender of main customer | CC BY 4.0 |
FINESCE Factory | Industrial | 1 | 1 min | 2 days | None | Yes | No | Germany (Aachen) | Machines | CC BY-SA | |
HTW Lichte Weiten | (Forschungsgruppe Solarspeichersysteme der HTW Berlin, 2019) | Residential | 1 | 15 min | 1 year | None | No | No | Germany (Berlin) | No Licence | |
HTW Synthetic | (Tjaden et al., 2015) | Residential | 74 | 1 s | 1 year | None | No | No | Germany (Representative) | Synthetic dataset merged | CC BY-NC |
CoSSMic | (Open Power System Data., 2020) | Residential, Commercial | 11 | 1 min, 15 min, 1 h | 1-3 years | None | Yes | No | Germany (South) | PV, EV, Type (Residential/SME) | CC BY 4.0 |
SciBER | (Staudt et al., 2018) | Other | 107 | 15 min | 3 years | None | No | No | Germany (South) | Type (Office, Gym, ...) | CC BY 4.0 |
iAWE | (Batra et al., 2013) | Residential | 1 | 1 s | 2 months | None | Yes | No | India (New Delhi) | Water | No Licence |
COMBED | (Batra et al., 2014) | Commercial | 1 | 30 s | 1 month | None | Yes | No | India (New Delhi) | No Licence | |
Irish CER Smart Metering Project data | (Commission for Energy Regulation (CER), 2012) | Residential, Commercial | 3835 | 30 min | 1.5 years | Tariff | No | No | Ireland | Type (Residential/SME/Other) | Free (Signed Access Form) |
Hvaler Substation Level data | (Dang-Ha et al., 2017) | Substation | 20 | 1 h | 2 years | None | No | No | Norway (Hvaler) | No Licence | |
Energy Informatics Group Pakistan | (Pereira et al., 2014) | Residential | 42 | 1 min | 1 year | None | Yes | No | Pakistan | Sociodemographic (building properties, no of people, devices) | No Licence |
UCI Electricity Load Diagrams | (Godahewa et al., 2020) | Residential, Commercial, Industrial | 370 | 15 min | 2 years | None | No | No | Portugal | No Licence | |
Electricity Consumption and Occupancy (ECO) | (Beckel et al., 2014) (Kleiminger et al., 2015) | Residential | 6 | 1 s | 8 months | None | Yes | No | Switzerland | Occupancy | CC BY 4.0 |
Home Electricity Survey (HES) | (Zimmermann et al., 2012) | Residential | 250 | 2 min | 1 month (255) to 1 year (26) | None | Yes | No | UK | Consumer Archetype | Request |
METER | (Grunewald & Diakonova, 2019) | Residential | 29 | 1 min | 28 hours | None | No | No | UK | Activity data, Sociodemographic | Free for Research (Access Form) |
IDEAL Household Energy Dataset | (Goddard et al., 2020) | Residential | 255 | 1 s | 3 years | None | Yes | No | UK | Smart Home, Sociodemographic, energy awareness survey, room temperature and humidity, building characteristics | CC BY 4.0 |
Customer-Led Network Revolution project data | (Sidebotham & Powergrid, 2015) | Residential, Commercial | 12000 | 30 min | > 1 year | Time of Use | No | No | UK | EV, PV, Heatpump, Tariff, | CC BY-SA |
UK Domestic Appliance-Level Electricity (UK-DALE) | (Kelly & Knottenbelt, 2015) | Residential | 5 | 16 kHz, 1 s | months, one house > 4 years | None | Yes | No | UK (London area) | CC BY 4.0 | |
UK Low Carbon London | (UK Power Networks, 2014) (Godahewa et al., 2020) | Residential | 5567 | 30 min | 2 years | Time of Use | No | No | UK (London) | CACI Acorn group | CC BY 4.0 |
REFIT | (Murray & Stankovic, 2016) (Murray et al., 2017) | Residential | 20 | 8 s | 2 years | None | Yes | Yes | UK (Loughborough) | PV, Gas, Water, Sociodemographic (Occupancy, Dwelling Age, Dwelling Type, No. Bedrooms) | CC BY 4.0 |
Flexible Networks for a Low Carbon Future | Substation | Several Secondary | 30 min | 1 year | None | No | No | UK (St Andrews, Whitchurch, Ruabon) | Free (Access Form) | ||
NTVV Substation | Substation | 316 | 5 s | > 4 years | None | No | No | UK (Thames Valley) | Open Access (Any purpose) | ||
NTVV Smart Meter | Commercial | 316 | 30 min | > 4 years | None | No | No | UK (Thames Valley) | Open Access (Any purpose) | ||
IEEE PES Open Data Sets | Residential, Commercial | 15 | 1 min, 5 min, 15 min | 2 weeks | None | No | No | USA | Connection limit | No Licence | |
Reference Energy Disaggregation Data Set (REDD) | (Kolter & Johnson, 2011) | Residential | 10 | 1 kHz | 3-19 days | None | Yes | No | USA (Boston) | Voltage | Free (Attribution, E-Mail) |
Iowa Distribution Test Systems | (Bu et al., 2019) | Substation | 240 nodes | 1 h | 1 year | None | Yes | No | USA (Iowa) | Grid data | Free (Attribution) |
Pecanstreet Dataport (Academic) | (Pecan Street Inc., 2018) | Residential | 75 | 1 min, 15 min, 1 h | 2-3 years | None | Yes | Yes | USA (Austin, New York, California) | PV, EV, Water, Gas, Sociodemographic | Free for Research (Access Form) |
Residential Building Stock Assessment | (Larson et al., 2014) | Residential | 101 | 15 min | 27 months | None | Yes | No | USA (North West Region) | Building Type (Single Family, Manufactured, Multifamily) | Free (Access Form) |
SMART* Home 2017 | (Barker et al., 2012) | Residential | 7 | 1 s | > 2 years | None | Yes | Yes | USA (Western Massachussets) | No Licence | |
SMART* Apartment | (Barker et al., 2012) | Residential | 114 | 1 min | 2 years | None | No | Yes | USA (Western Massachussets) | No Licence | |
SMART* Occupancy | (Barker et al., 2012) | Residential | 2 | 1 min | 3 weeks | None | No | No | USA (Western Massachussets) | Occupancy | No Licence |
SMART* Microgrid | (Barker et al., 2012) | Residential | 443 | 1 min | 1 day | None | No | No | USA (Western Massachussets) | No Licence | |
SMART* Home 2013 | (Barker et al., 2012) | Residential | 3 | 1 s | 3 months | None | Yes | No | USA (Western Massachussets) | Solar, Wind, Environmental, Smart Home, Voltage, | No Licence |
Hierarchical Demand Forecasting Benchmark | (Nespoli et al., 2020) | Residential, Commercial, Substation | 24 | 10 min | 1 year | None | Yes | Yes | Switzerland (Rolle) | Reactive Power, Voltage, THD | CC BY 4.0 |
BLEM | (Kostmann & Härdle, 2019) | Residential | 200 | 3 min | 1 year | None | No | No | Germany | No Licence | |
MORED | (Ahajjam et al., 2020) | Residential, Commercial | 12 | 5 or 10s | 30-90 days | None | Yes | No | Morocco (Tetuán, Rabat, & Sale) | No Licence (Atrribution) | |
Ausgrid substation data | Substation | 225 | 15 min | 20 years | None | No | No | Australia (NSW) | No Licence | ||
Ausgrid Solar Home | Residential | 300 | 30 min | 3 years | None | No | No | Australia (NSW) | No Licence | ||
SustData | (Pereira et al., 2014) | Residential | 50 | 1 min | several months | None | Yes | Yes | Portugal (Funchal) | Voltage, Powerfactor, Reactive Power, Sociodemographic (Type, Bedroooms, occupants) | Free for Research (E-Mail) |
Smart Energy Research Lab Exploratory Data (SERL) | (Smart Energy Research Lab & Local Government, 2020) | Residential | 1770 | 30 min | 1 year | None | No | No | UK | Free for Research (E-Mail) | |
Hourly Usage of Energy (HUE) | (Makonin, 2019) | Residential | 22 | 1 h | 3 years | None | No | Yes | Canada (British Columbia) | CC-BY 4.0 | |
ENERTALK | (Shin et al., 2019) | Residential | 22 | 15 Hz | 30 days | None | Yes | No | Korea | No Licence | |
Living Lab Catapult | Residential | 100 | 15 min | several months | Heating plans | Yes | Yes | UK | Heat pumps in some houses, gas usage, room temperature and humidity | https://usmart-static.s3-eu-west-1.amazonaws.com/Data+Sharing+Licence+08102019+v3.0.pdf | |
PIEG-Strom Tool Manufacturer | Industrial | 1 | 15 min | 1 year | None | No | No | Germany | CC BY 4.0 | ||
PIEG-Strom Electroplating | Industrial | 1 | 15 min | 1.5 years | None | No | No | Germany | CC BY 4.0 | ||
Western Power Distribution Peak | Substation | 3 | 1 min, 30 min | 2 years | None | No | Yes | UK | https://www.westernpower.co.uk/open-data-licence | ||
Western Power Distribution EV | Substation | 3 | 15 min | 1 year | None | Yes | Yes | UK | EV Load | https://www.westernpower.co.uk/open-data-licence | |
Western Power Distribution Hierarchy | Substation | 40 | 30 min | 2 years | None | Yes | No | UK | Network Hierarchy | https://www.westernpower.co.uk/open-data-licence | |
WPuQ (2.0) | (Schlemminger et al., 2022) | Residential | 38 | 10 s, 1 h | 2 years | None | Yes | Yes | Germany (Lower Saxony) | Heat pumps, PV, Heating, Power, voltage, current and power factor | CC BY 4.0 |
SustDataED2 | (Pereira et al., 2022) | Residential | 1 | 0.5 Hz | 96 days | None | Yes | No | Portugal | On-Off Transitions of appliances, current, voltage | CC BY 4.0 |
Northern Powergrid Primaries | Substation | 171 | 30 min | 1 year | None | No | No | UK (North East and Yorkshire and the Humber Region of England) | https://northernpowergrid.opendatasoft.com/p/opendatalicence/ | ||
CKW Smart-Meter (Individual) | Residential, Commercial | >100,000 (Aggregated) | 15 min | 2 years | None | No | No | Switzerland | https://www.ckw.ch/landingpages/open-data | ||
CKW Smart-Meter (Aggregated) | Residential, Commercial | >100,000 (Aggregated) | 15 min | 2 years | None | No | No | Switzerland | Postcode level | https://www.ckw.ch/landingpages/open-data | |
Borealis | Residential | 30 | 6 s | up to 1 year | None | Phases | No | Canada (Waterloo) | Room temperature | CC0 1.0 Universal | |
HIPE Data Set | (Bischof et al., 2018) | Industrial | 10 | 5 s | 3 months | None | No | No | Germany (Karlsruhe) | Voltage, current, Reactive Power, THD | CC-BY 4.0 |
Smart-Grid Smart-City Customer Trial | Residential, Commercial | 79000 | 30 min | 4 years | Tariff | No | No | Australia | appliance use, climate | CC BY 3.0 AU | |
SSEN Distribution LV Feeder Usage | Substation | 40000 | 1 h | years (updated regularly) | No | Yes | No | Scottland, UK | Hierarchical from primary substation to LV feeder | CC BY 4.0 | |
UK Power Networks | Substation | 40000 | 30 min | months (updated regularly) | No | Yes | No | UK | Hierarchical from primary substation to LV feeder | CC BY 4.0 | |
OPSCI - Open SCI | Substation | One | 15 min | 4 years | None | true | false | Ljubljana, Slovenia | Voltage | ||
eMARC | Residential | 144 | 1 h | 3 years | None | false | false | India | Voltage | Non-commercial, attribution | |
ETDataset | (Zhou et al., 2021) | Substation | 1 | 1 h | 2 years | None | false | false | China | Oil Temperature | CC BY-ND 4.0 |
Cite
If you find it useful and use it in your work, feel free to cite our preprint:
@article{haben2021review,
title = {Review of low voltage load forecasting: Methods, applications, and recommendations},
journal = {Applied Energy},
volume = {304},
pages = {117798},
year = {2021},
issn = {0306-2619},
doi = {https://doi.org/10.1016/j.apenergy.2021.117798},
url = {https://www.sciencedirect.com/science/article/pii/S0306261921011326},
author = {Stephen Haben and Siddharth Arora and Georgios Giasemidis and Marcus Voss and Danica {Vukadinović Greetham}},
}
References
- Einfalt, A., Schuster, A., Leitinger, C., Tiefgraber, D., Litzlbauer, M., Ghaemi, S., Wertz, D., & Frohner, A. (2011). Konzeptentwicklung für ADRES-Autonome Dezentrale Regenerative Energiesysteme. Energie Der Zukunft. 1st Ed. Vienna.
- Monacchi, A., Egarter, D., Elmenreich, W., D’Alessandro, S., & Tonello, A. M. (2014). GREEND: An energy consumption dataset of households in Italy and Austria. 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm), 511–516.
- Candanedo, L. M., Feldheim, V., & Deramaix, D. (2017). Data driven prediction models of energy use of appliances in a low-energy house. Energy and Buildings, 140, 81–97.
- de Mello Martins; Vagner Barbosa Nascimento; Antônio Renato de Freitas; Pedro Bittencourt e Silva; Raphael Guimarães Duarte Pinto, P. B. (2018). Industrial Machines Dataset for Electrical Load Disaggregation. IEEE Dataport. https://doi.org/10.21227/cg5v-dk02
- Makonin, S., Wang, Z. J., & Tumpach, C. (2018). RAE: The rainforest automation energy dataset for smart grid meter data analysis. Data, 3(1), 8.
- Makonin, S. (2016). Ampds2: the almanac of minutely power dataset (version 2). In Harvard Dataverse (p. V2).
- Makonin, S., Ellert, B., Bajić, I. V., & Popowich, F. (2016). Electricity, water, and natural gas consumption of a residential house in Canada from 2012 to 2014. Scientific Data, 3.
- Johnson, G., & Beausoleil-Morrison, I. (2017). Electrical-end-use data from 23 houses sampled each minute for simulating micro-generation systems. Applied Thermal Engineering, 114, 1449–1456.
- Saldanha, N., & Beausoleil-Morrison, I. (2012). Measured end-use electric load profiles for 12 Canadian houses at high temporal resolution. Energy and Buildings, 49, 519–530.
- Hebrail, G., & Berard, A. (2012). Individual household electric power consumption data set. É. d. France, Ed., Ed: UCI Machine Learning Repository.
- Kriechbaumer, T., & Jacobsen, H.-A. (2017). BLOND: Building-Level Office eNvironment Dataset [Dataset]. Technical University of Munich. https://doi.org/10.14459/2017mp1375836
- Beyertt, A., Verwiebe, P., Seim, S., Milojkovic, F., & Müller-Kirchenbauer, J. (2020). Felduntersuchung zu Behavioral Energy Efficiency Potentialen von privaten Haushalten. https://doi.org/10.5281/zenodo.3855575
- Forschungsgruppe Solarspeichersysteme der HTW Berlin. (2019). Lastprofil des Berliner Mehrfamilienhauses Lichte Weiten mit 11 Wohneinheiten (Messzeitraum 2014). \urlhttps://pvspeicher.htw-berlin.de/veroeffentlichungen/daten/.
- Tjaden, T., Bergner, J., Weniger, J., Quaschning, V., & Solarspeichersysteme, F. (2015). Repräsentative elektrische Lastprofile für Wohngebäude in Deutschland auf 1-sekündiger Datenbasis. Hochschule Für Technik Und Wirtschaft HTW Berlin.
- Open Power System Data. (2020). Data Package Household Data. Version 2020-04-15.
- Staudt, P., Ludwig, N., Huber, J., Hagenmeyer, V., & Weinhardt, C. (2018). SCiBER: A new public data set of municipal building consumption. Proceedings of the Ninth International Conference on Future Energy Systems, 618–621.
- Batra, N., Gulati, M., Singh, A., & Srivastava, M. B. (2013). It’s Different: Insights into home energy consumption in India. Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings, 1–8.
- Batra, N., Parson, O., Berges, M., Singh, A., & Rogers, A. (2014). A comparison of non-intrusive load monitoring methods for commercial and residential buildings. ArXiv:1408.6595.
- Commission for Energy Regulation (CER). (2012). CER Smart Metering Project - Electricity Customer Behaviour Trial 2009-2010 [dataset]. 1st Edition.
- Dang-Ha, T.-H., Bianchi, F. M., & Olsson, R. (2017). Local short term electricity load forecasting: Automatic approaches. 2017 International Joint Conference on Neural Networks (IJCNN), 4267–4274.
- Pereira, L., Quintal, F., Gonçalves, R., & Nunes, N. J. (2014). SustData: A public dataset for ICT4S electric energy research. ICT for Sustainability 2014 (ICT4S-14).
- Godahewa, R., Bergmeir, C., Webb, G., Hyndman, R., & Montero-Manso, P. (2020). Electricity Hourly Dataset (Version 3) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.4656140
- Beckel, C., Kleiminger, W., Cicchetti, R., Staake, T., & Santini, S. (2014). The ECO Data Set and the Performance of Non-Intrusive Load Monitoring Algorithms. Proceedings of the 1st ACM International Conference on Embedded Systems for Energy-Efficient Buildings (BuildSys 2014). Memphis, TN, USA, 80–89.
- Kleiminger, W., Beckel, C., & Santini, S. (2015, September). Household Occupancy Monitoring Using Electricity Meters. Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp 2015).
- Zimmermann, J.-P., Evans, M., Griggs, J., King, N., Harding, L., Roberts, P., & Evans, C. (2012). Household Electricity Survey: A study of domestic electrical product usage. In Intertek Testing & Certification Ltd.
- Grunewald, P., & Diakonova, M. (2019). METER: UK Household Electricity and Activity Survey, 2016-2019, UK Data Service.
- Goddard, N., Kilgour, J., Pullinger, M., Arvind, D. K., Lovell, H., Moore, J., Shipworth, D., Sutton, C., Webb, J., Berliner, N., & others. (2020). IDEAL Household Energy Dataset. University of Edinburgh. School of Informatics.
- Sidebotham, L., & Powergrid, N. (2015). Customer-led network revolution project closedown report. Customer Led Network Revolution. Newcastle upon Tyne.
- Kelly, J., & Knottenbelt, W. (2015). The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes. Scientific Data, 2(150007). https://doi.org/10.1038/sdata.2015.7
- UK Power Networks. (2014). UK Low Carbon London project. https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households
- Godahewa, R., Bergmeir, C., Webb, G., Hyndman, R., & Montero-Manso, P. (2020). London Smart Meters Dataset (without Missing Values) (Version 3). Zenodo. https://doi.org/10.5281/zenodo.4656091
- Murray, D., & Stankovic, L. (2016). REFIT: Electrical Load Measurements (Cleaned). In University of Strathclyde, PURE.
- Murray, D., Stankovic, L., & Stankovic, V. (2017). An electrical load measurements dataset of United Kingdom households from a two-year longitudinal study. Scientific Data, 4(1), 1–12.
- Kolter, J. Z., & Johnson, M. J. (2011). REDD: A public data set for energy disaggregation research. Workshop on Data Mining Applications in Sustainability (SIGKDD), San Diego, CA, 25(Citeseer), 59–62.
- Bu, F., Yuan, Y., Wang, Z., Dehghanpour, K., & Kimber, A. (2019). A time-series distribution test system based on real utility data. ArXiv Preprint ArXiv:1906.04078.
- Pecan Street Inc. (2018). Dataport.
- Larson, B., Gilman, L., Davis, R., & Logsdon, M. (2014). J. Uslan and B. Hannas and D. Baylon and P. Storm and V. Mugford and N. Kvaltine. Residential Building Stock Assessment: Metering Study. Technical Report E14-283, Northwest Energy Efficiency Alliance.
- Barker, S., Mishra, A., Irwin, D., Cecchet, E., Shenoy, P., Albrecht, J., & others. (2012). Smart*: An open data set and tools for enabling research in sustainable homes. SustKDD, August, 111(112), 108.
- Nespoli, L., Medici, V., Lopatichki, K., & Sossan, F. (2020). Hierarchical demand forecasting benchmark for the distribution grid. Electric Power Systems Research, 189, 106755.
- Kostmann, M., & Härdle, W. K. (2019). Forecasting in Blockchain-Based Local Energy Markets. Energies, 12(14).
- Ahajjam, M. A., Bonilla Licea, D., Essayeh, C., Ghogho, M., & Kobbane, A. (2020). MORED: A Moroccan Buildings’ Electricity Consumption Dataset. Energies, 13(24), 6737. https://doi.org/10.3390/en13246737
- Pereira, L., Quintal, F., Gonçalves, R., & Nunes, N. J. (2014). SustData: A public dataset for ICT4S electric energy research. ICT for Sustainability 2014 (ICT4S-14).
- Smart Energy Research Lab, C., Ministry of Housing, & Local Government, E. C. for M.-R. W. F., Royal Mail Group Limited. (2020). Smart Energy Research Lab Exploratory Data, 2019-2020: Secure Access. https://doi.org/http://doi.org/10.5255/UKDA-SN-8643-2
- Makonin, S. (2019). HUE: The hourly usage of energy dataset for buildings in British Columbia. Data in Brief, 23, 103744.
- Shin, C., Lee, E., Han, J., Yim, J., Rhee, W., & Lee, H. (2019). The ENERTALK dataset, 15 Hz electricity consumption data from 22 houses in Korea. Scientific Data, 6(1), 1–13.
- Schlemminger, M., Ohrdes, T., Schneider, E., & Knoop, M. (2022). Dataset on electrical single-family house and heat pump load profiles in Germany. Scientific Data, 9, 56. https://doi.org/10.1038/s41597-022-01156-1
- Pereira, L., Costa, D., & Ribeiro, M. (2022). A residential labeled dataset for smart meter data analytics. Scientific Data, 9(1), 1–11.
- Bischof, S., Trittenbach, H., Vollmer, M., Werle, D., Blank, T., & Böhm, K. (2018). Hipe: An energy-status-data set from industrial production. Proceedings of the Ninth International Conference on Future Energy Systems, 599–603.
- Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., & Zhang, W. (2021). Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. The Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Conference, 35(12), 11106–11115.